

HC3 **HYDRAULIC CYLINDERS** HCK3 **HYDRAULIC CYLINDERS ATEX 2014/34/UE SERIES 10**

ISO 6022 DIN 24333

DESCRIPTION

- Double acting cylinders constructed in compliance with ISO 6022 and DIN 24333.
- The materials used to make these cylinders are particularly resistant and make them suitable for applications in the iron and steel sector.
- The cylinder is available with 5 different mounting styles as well as a range of accessories to meet all application requirements.
 - A scraper ring
 - B piston rod seal

 - C guide ring
 D drain seal (O-Ring)
 - E piston rod seal
 - F guide ring
 - G piston seal
 - H1 front cushioning adjustment screw
 - H2 rear cushioning adjustment screw
 - L1 front cushion
 - L2 rear cushion
 - M front cushioning bushing
 - N rear cushioning bushing

ATEX 2014/34/UE rated version for installation in potentially explosive atmospheres is now available. The standard version of cylinders is ATEX II 2GD classified, whereas cylinders with proximity sensors are ATEX II 3GD classified. The declaration of conformity to the up mentioned standards is always supplied with the cylinder. See paragraph 3 for details.

PERFORMANCES

Nominal operating pressure (continuous service)	bar	250
Maximum operating pressure	bar	320
Maximum speed (standard)	m/s	0,5
Maximum stroke (standard)	mm	5000
Fluid temperature range (standard)	°C	-20 / +80
Fluid viscosity range	cSt	10 ÷ 400
Fluid contamination degree		According to ISO 4406:1999 class 20/18/15
Recommended viscosity	cSt	25

71 200/117 ED 1/18

1 - CHARACTERISTICS

1.1 - Bores and piston rods

 \emptyset 50 to \emptyset 400 mm bores are available to enable a vast choice according to required force.

Two piston rod diameters are available for each bore:

- reduced piston rod with area ratio 1:1.65
- standard piston rod with area ratio 1:2

1.2 - Cushionings

On request, gradual and adjustable cushioning devices can be fitted in the front and/or rear ends of the cylinder without affecting overall dimensions

The special design of the cushions ensures optimal repeatability also in the event of variations in fluid viscosity.

Cushioning devices are always recommended as they ensure impact-free stopping even at high speed thus reducing pressure surges and impact transferred to the mounting supports.

The cylinder ends of bores higher than 160mm with cushioning can have an additional port connected directly with the braking chamber. This connection must be used in case of application, near the cylinder, of a pressure relief valve set at 350 bar, to limit overpressures during braking. For further information and for the order identification code, please consult our technical office.

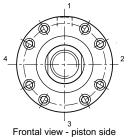
The table below shows cushioning cone lengths:

Bore (mm)	50	63	80	100	125	140	160	180	200	250	320	400
Front cone length (mm)	38	40	50	50	60	60	75	75	80	100	100	110
Rear cone length (mm)	34	42	58	49	64	64	68	73	69	101	99	108

1.3 - Connections

The cylinders are supplied as standard with cylindrical BSP threads and spot facing for seal rings in compliance with ISO 1179.

Connections which are oversized compared to those shown in the dimensional tables are available upon request. For further information and for the order identification code, please consult our technical office.


For correct cylinder operation, fluid velocity must not exceed 5 m/s.

1.4 - Connection position

Standard positions of the oil ports, cushioning adjustment screws, breathers, optional external drain and optional end-stroke proximity sensors, are indicated in the table below.

Connection positions different from the standard are available upon request. As a consequence, the other options positions will be rotated.

For special requests, please consult our technical office.

	POSITION
Connections	1
Cushioning adjustment	3
Breathers	4
Drainage	1
Proximity end stroke	2
Optional port (see par. 1.2)	4

1.5 - Seals

The table below illustrates seal characteristics in relation to hydraulic fluid and operating temperatures.

Туре	Seal type	Seal material	Hydraulic fluid	Minimum pressure [bar]	Operating pressure [°C]	Max speed [m/s]
ĸ	Standard	nitrile polyurethane	mineral oil	10	-20 / +80	0,5
М	Low friction	nitrile PTFE	Mineral oil Water glycol	20 (note)	-20 / +80	15
٧	high temperature and / or aggressive fluid	Viton PTFE	Special fluids	10	-20 / +150	1

NOTE: for lower pressure use consult our technical office.

1.6 - Strokes

Standard cylinders are available with strokes up to 5000 mm. Longer cylinder strokes can be supplied on request.

Stroke tolerances are:

0 + 1 mm for strokes up to 1000 mm

0 + 4 mm for strokes up to 5000 mm.

1.7 - Spacers

In the case of cylinder strokes above 1000 mm we recommend the use of spacers which can be inserted to reduce loads on the piston rod bushing and prevent the piston from sticking.

Spacers are constructed in hardened and tempered steel with PTFE facing.

Every spacer is 50 mm long. We recommend to insert 1 spacer for strokes from 1001 to 1500 mm, with an increment of 1 spacer for every 500 mm stroke.

You must remember that the overall length of the cylinder increases according to the number of inserted spacers (50 mm for each spacer).

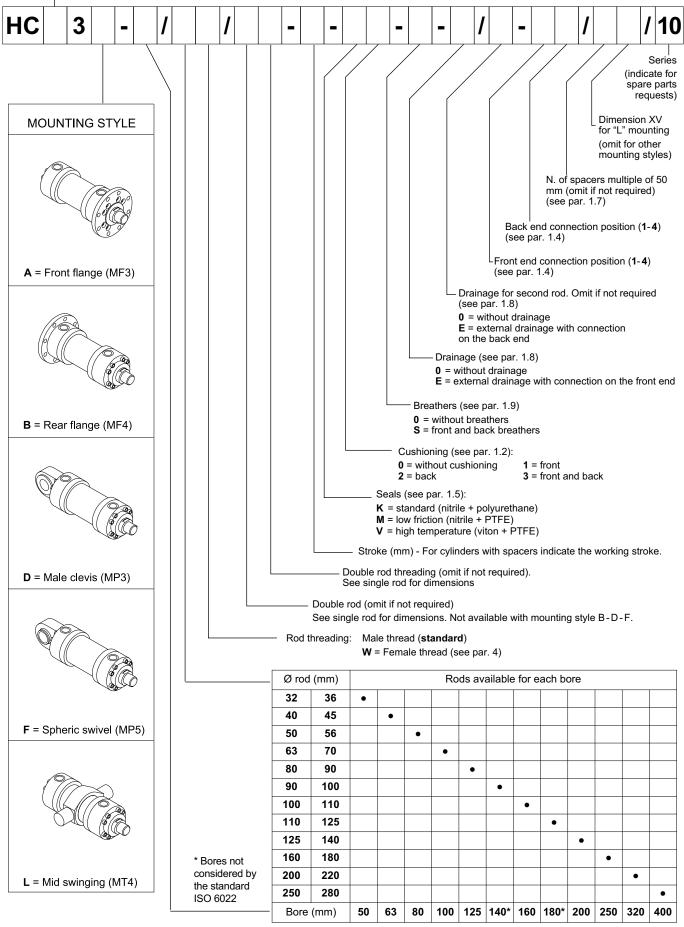
1.8 - Drainage

A connection for external drainage on the front end (even on the back end for double-rod cylinders) can be supplied upon request, for fluid drops recovery of the first seal of the rod, without any modification to the overall dimensions.

Connection: 1/8" BSP for bore up to Ø 100 included - 1/4" BSP for higher bores.

1.9 - Breathers

On request cylinder ends can be supplied with breathers for the elimination of air. This is necessary when the entire stroke is not used or when connections are not facing upwards.


1.10 - Surface finish

The cylinders are supplied painted with Duplomatic black opaque colour with a paint thickness of 40μ . The rod is chromed.

71 200/117 ED 2/18

2 - IDENTIFICATION CODE

■ K = Explosion-proof version according to ATEX 2014/34/UE (paragraph 3). Omit if not required.

71 200/117 ED 3/18

3 - ATEX 2014/34/UE RATED VERSION

ATEX 2014/34/UE rated version cylinders for installation in potentially explosive atmospheres are now available. The standard version of cylinders is ATEX II 2GD classified, whereas cylinders with proximity sensors are ATEX II 3GD classified.

The supply is always delivered accompanied by:

- · the ATEX declaration of conformity
- the operating and maintenance user manual, where are described all the information for the proper use of cylinders in potentially explosive environments.

TYPE EXAMINATION CERTIFICATE N°: CEC 10 ATEX 138

3.1 - Identification code

To order the ATEX-rated version, simply insert the letter K in the initial part of the identification code. The description becomes HCK3-*.

For cylinders without end-stroke proximity sensors please order with the identification code shown at paragraph 2.

Example: HCK3C-200/125-350-K3-S-0-11/20

For cylinders equipped with end-stroke proximity sensors please refer to the identification code shown at paragraph 16.1.

Example: HCK3F-FP22-80/56-225-K3-S-0-11/20

The ATEX-rated cylinders equipped with end-stroke proximity sensors are compliant with the specifications listed paragraph 16; Also the same prescriptions described in that paragraph are effective. (NB: for bores Ø125 and Ø400 feasibility contact our technical department).

The proximity sensors are compliant with the description and the wiring diagram shown at the paragraph 16.2.

3.2 - Classification

Cylinders without end-stroke proximity sensors have this ATEX mark:

II 2GD ck IIC T4 (-20°C Ta +80°C)

- EX: Specific marking of explosion protection as ATEX 2014/34/UE directive and related technical specification requests.
- II: Group II for surface plants
- Category 2 high protection, eligible for zone 1 for gases and zone 21 for dust (automatically be eligible for zone 2 category 3 for gases and zone 22 for dust)
- GD: for use in areas in which explosive atmospheres caused by gases, vapours, mists or air/dust mixtures.
- ck: protection by constructional safety and by liquid immersion
- IIC: Gas group (automatically eligible for group IIA and IIB)
- T4: Temperature class for gas (max surface temperature)
- -20°C Ta +80°C: Ambient temperature range

Cylinders with end-stroke proximity sensors have this ATEX mark:

II 3GD ck IIC T4 (-20°C Ta +80°C)

- EX: Specific marking of explosion protection as ATEX 2014/34/UE directive and related technical specification requests
- II: Group II for surface plants
- Category 3 standard protection, eligible for zone 2 for gases (zone 22 for dust)
- GD: for use in areas in which explosive atmospheres caused by gases, vapours, mists or air/dust mixtures.
- ck: protection by constructional safety and by liquid immersion
- IIC: Gas group (automatically eligible for group IIA and IIB)
- T4: Temperature class for gas (max surface temperature)
- -20°C Ta +80°C: Ambient temperature range

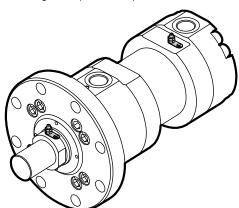
3.3 - Operating temperatures

The operating ambient temperature must be between -20°C and +80 °C.

The fluid temperature for the standard version seals (K) and for low friction seals (M) must be between -20°C and +80°C, as for viton (V) seals must be between -20°C and +120°C.

The actuators are T4 (T135° C) class temperature classified, so they are eligible for operation also at higher class temperature (T3, T2, T1 (T200° C).

3.4 - Admitted velocities


The maximum permissible speed is $0.5\,$ m/s for standard cylinder seals (K) and 1 m/s for actuators with low friction seals (M) or Viton (V).

3.5 - Connectors

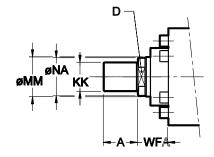
The connectors for the end-stroke proximity are available upon request. They are metal, to be wired. The ordering code is **0680961**. One connector per sensor is needed.

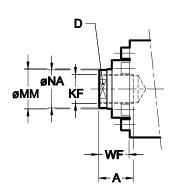
3.6 - Grounding points

The ATEX certified actuators are supplied with two grounding points, one on the rear head and one on the rod, for the wire of the cylinder with the ground (M4 screws).

The bottom grounding point must always be connected whereas the connection of the rod grounding point can be avoided in case the whole mechanical stroke is covered during the cylinder operating phase (from the mechanical stop on the cylinder head to the mechanical stop on the bottom), or in case the rod has already been grounded through the mechanical connection between the rod itself and the machine/plan it is installed on.

In order to verify such a condition it is necessary to test the equipotentiality of the parts and a maximum resistance equal to $100\,\Omega$ as per the EN13463-1 norm.


71 200/117 ED 4/18

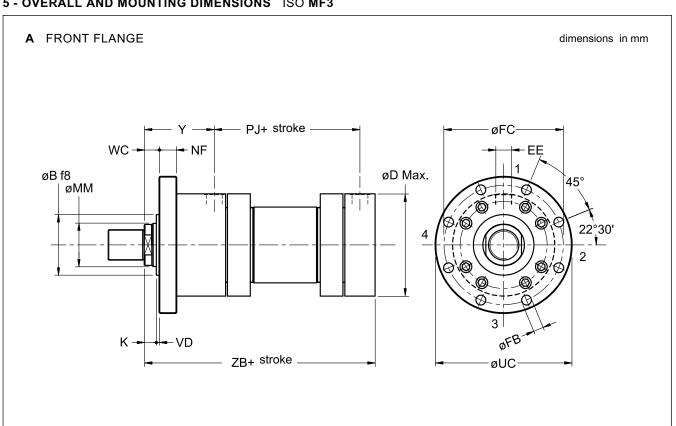


4 - OVERALL AND MOUNTING DIMENSIONS

dimensions in mm

Standard = male thread

W = female thread

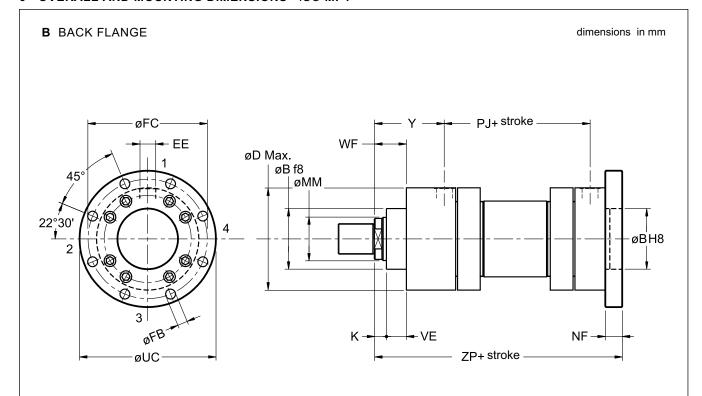

* For bores \varnothing 180 (piston rod \varnothing 110) and higher, the rod has 4 holes at 90° realized on \varnothing NA and of \varnothing shown in the table.

A pin wrench UNI 6752 - DIN 1810 must be used.

Bore	MM Ø rod	KK	Ø NA	KF	A	D	WF
50	32 36	M27x2	31 35	- M27x2	36	28 32	47
63	40 45	M33x2	38 43	- M33x2	45	34 36	53
80	50 56	M42x2	48 54	- M42x2	56	43 46	60
100	63 70	M48x2	60 67	- M48x2	63	53 60	68
125	80 90	M64x3	77 87	- M64x3	85	65 75	76
140	90 100	M72x3	87 96	- M72x3	90	75 85	76
160	100 110	M80x3	96 106	- M80x3	95	85 95	85
180	110 125	M90x3	106 121	- M90x3	105	95 ø 12*	95
200	125 140	M100x3	121 136	- M100x3	112	ø 12*	101
250	160 180	M125x4	155 175	- M125x4	125	ø 15*	113
320	200 220	M160x4	195 214	- M160x4	160	ø 15*	136
400	250 280	M200x4	245 270	- M200x4	200	ø 20*	163

71 200/117 ED 5/18

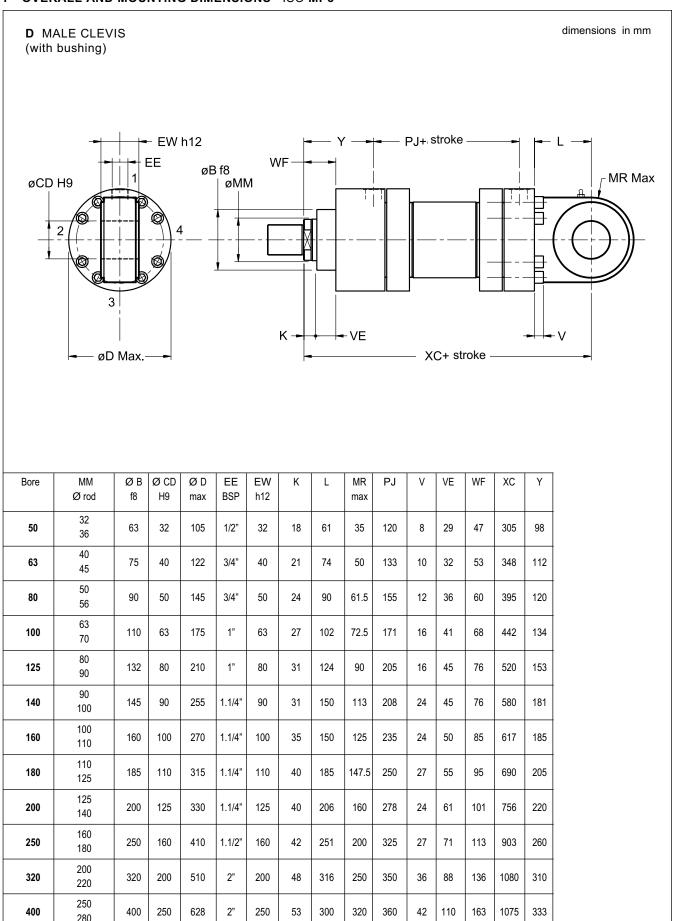
5 - OVERALL AND MOUNTING DIMENSIONS ISO MF3


NOTE: Ø 400 bore has 12 equally spaced Ø FB holes in the mounting flange

Bore	MM Ø rod	ØB f8	ØD max	EE BSP	ØFB	ØFC	К	NF	PJ	ØUC	VD	WC	Y	ZB
50	32 36	63	105	1/2"	13,5	132	18	25	120	155	4	22	98	244
63	40 45	75	122	3/4"	13,5	150	21	28	133	175	4	25	112	274
80	50 56	90	145	3/4"	17,5	180	24	32	155	210	4	28	120	305
100	63 70	110	175	1"	22	212	27	36	171	250	5	32	134	340
125	80 90	132	210	1"	22	250	31	40	205	290	5	36	153	396
140	90 100	145	255	1. 1/4"	26	300	31	40	208	340	5	36	181	430
160	100 110	160	270	1. 1/4"	26	315	35	45	235	360	5	40	185	467
180	110 125	185	300	1. 1/4"	33	365	40	50	250	420	5	45	205	505
200	125 140	200	330	1. 1/4"	33	385	40	56	278	440	5	45	220	550
250	160 180	250	410	1. 1/2"	39	475	42	63	325	540	8	50	260	652
320	200 220	320	500	2"	45	600	48	80	350	675	8	56	310	764
400	250 280	400	628	2"	45 NOTE	720	53	100	360	800	10	63	333	775

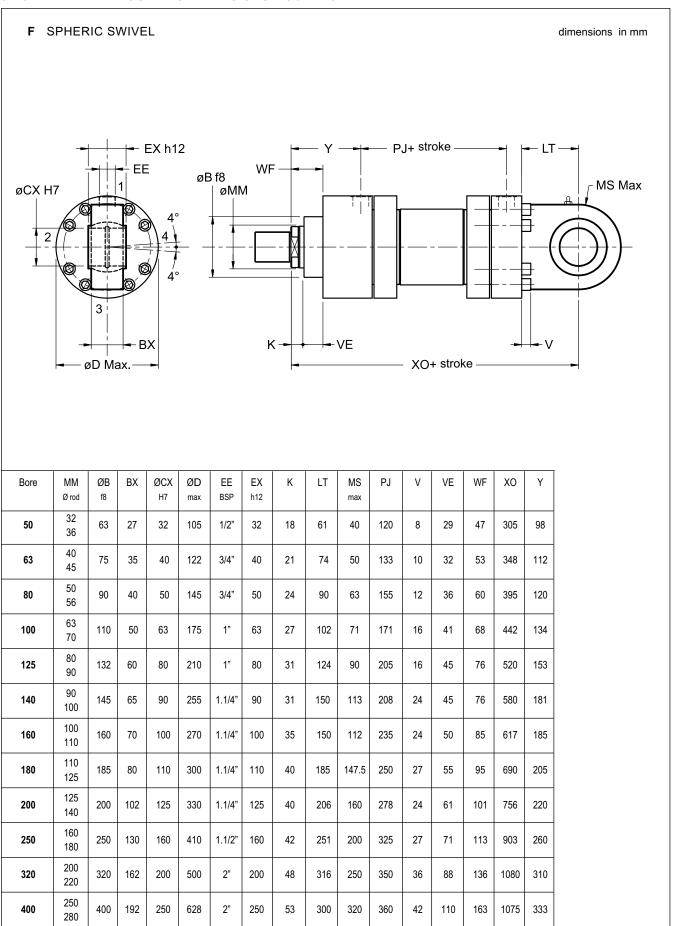
71 200/117 ED 6/18

6 - OVERALL AND MOUNTING DIMENSIONS ISO MF4

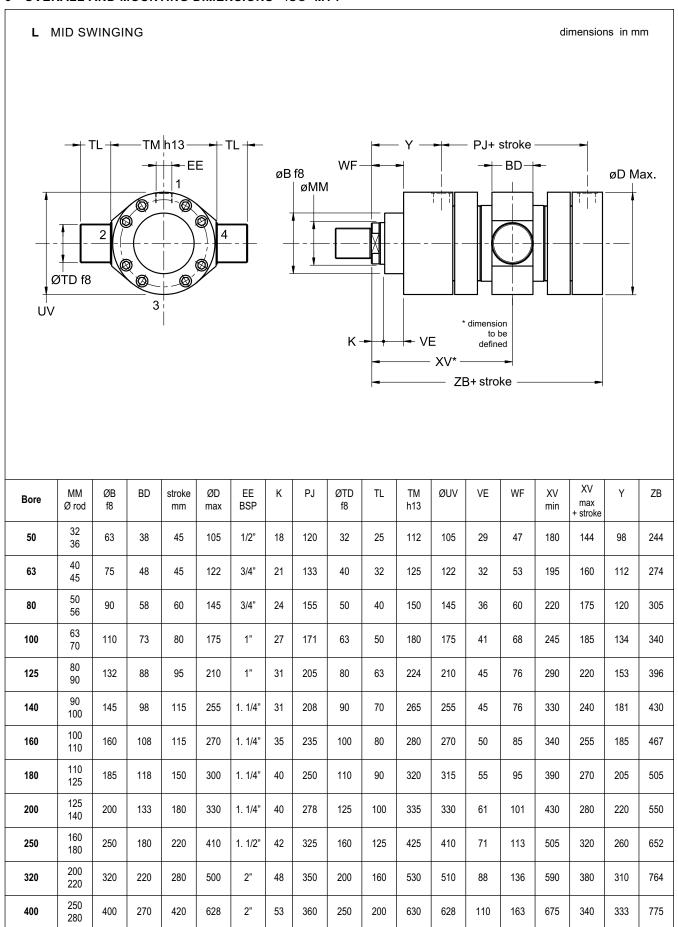

NOTE: Ø 400 bore has 12 equally spaced ØFB holes in the mounting flange

Bore	MM Ø rod	ØB f8	ØD max	EE BSP	ØFB	ØFC	K	NF	PJ	ØUC	VE	WF	Y	ZP
50	32 36	63	105	1/2"	13,5	132	18	25	120	155	29	47	98	265
63	40 45	75	122	3/4"	13,5	150	21	28	133	175	32	53	112	298
80	50 56	90	145	3/4"	17,5	180	24	32	155	210	36	60	120	332
100	63 70	110	175	1"	22	212	27	36	171	250	41	68	134	371
125	80 90	132	210	1"	22	250	31	40	205	290	45	76	153	430
140	90 100	145	255	1. 1/4"	26	300	31	40	208	340	45	76	181	465
160	100 110	160	270	1. 1/4"	26	315	35	45	235	360	50	85	185	505
180	110 125	185	300	1. 1/4"	33	365	40	50	250	420	55	95	205	550
200	125 140	200	330	1. 1/4"	33	385	40	56	278	440	61	101	220	596
250	160 180	250	410	1. 1/2"	39	475	42	63	325	540	71	113	260	703
320	200 220	320	500	2"	45	600	48	80	350	675	88	136	310	830
400	250 280	400	628	2"	45 NOTE	720	53	100	360	800	110	163	333	855

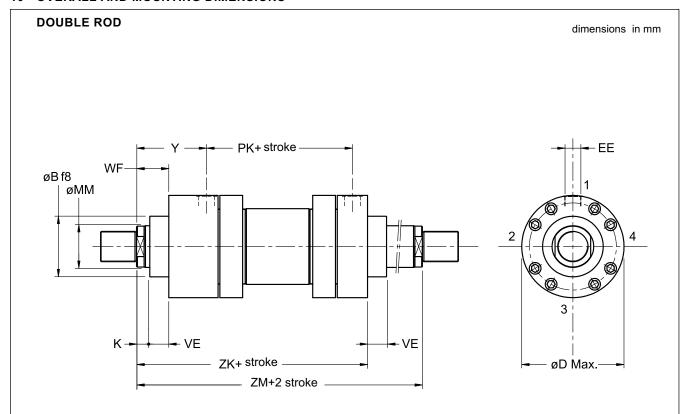
71 200/117 ED 7/18


7 - OVERALL AND MOUNTING DIMENSIONS ISO MP3

71 200/117 ED **8/18**


8 - OVERALL AND MOUNTING DIMENSIONS ISO MP5

71 200/117 ED 9/18


HC3

9 - OVERALL AND MOUNTING DIMENSIONS ISO MT4

71 200/117 ED 10/18

10 - OVERALL AND MOUNTING DIMENSIONS

For other dimensions and mounting styles please see single rod cylinder tables.

Not available for mounting styles B - D - F.

Bore	MM Ø rod	К	ØD max	EE BSP	PK	VE	WF	Y	ZM	ZK
50	32 36	18	105	1/2"	126	29	47	98	322	275
63	40 45	21	122	3/4"	134	32	53	112	358	305
80	50 56	24	145	3/4"	153	36	60	120	393	333
100	63 70	27	175	1"	165	41	68	134	433	365
125	80 90	31	210	1"	204	45	76	153	510	434
140	90 100	31	255	1. 1/4"	208	45	76	181	570	494
160	100 110	35	270	1. 1/4"	225	50	85	185	595	510
180	110 125	40	300	1. 1/4"	250	55	95	205	660	565
200	125 140	40	330	1. 1/4"	271	61	101	220	711	610
250	160 180	42	410	1. 1/2"	308	71	113	260	828	715
320	200 220	48	500	2"	350	88	136	310	970	834
400	250 280	53	628	2"	360	110	163	333	975	812

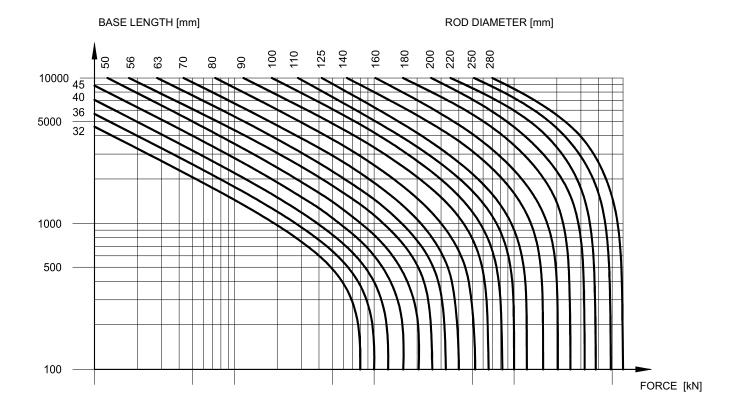
NOTE: Double rod cylinders are developed with two separate rods, fixed together by means of threading.

Because of this mounting style, the rod with female threading is less resistant than the other. To simplify the identification of the more resistant rod, the " \mathbf{M} " marking is stamped on its end.

We recommend the use of the weaker rod for the less demanding applications.

71 200/117 ED 11/18

11 - ROD DIAMETER SELECTION


To ensure adequate stability, cylinders must be calculated for maximum compressive load according to the following simplified procedure:

- Refer to the table to identify the stroke factor according to the mounting style.
- To calculate the reference length, multiply the working stroke by the stroke factor.
- To calculate the thrust force, multiply the total cylinder area by the operating pressure.
- On the diagram, find the point of intersection between the thrust force and reference length.
- Identify the minimum rod diameter on the curve above the previous point of intersection.

Cylinders with rod diameters smaller than the value plotted in the diagram will not guarantee sufficient rigidity.

Mounting style	Rod connection	Mounting	Stroke factor
	Fixed and supported	1:[2
A	Fixed and rigidly guided		0.5
	Jointed and rigidly guided		0.7
	Fixed and supported	<u> </u>	4
В	Fixed and rigidly guided	<u> </u>	1
	Jointed and rigidly guided		1.5

Mounting style	Rod connection	Mounting	Stroke factor
D-F	Jointed and supported		4
D-1	Jointed and rigidly guided		2
	Jointed and supported		3
L	Jointed and rigidly guided		1.5

71 200/117 ED 12/18

12 - THEORETICAL FORCES

Push force

 $Fs = P \cdot At$

Pull force

Ft = P · Aa

Fs = Force (extension) in N Ft = Force (retraction) in N Αt = Total area in mm² = Annular area in mm² Aa = Pressure in MPa

1 bar = 0.1 MPa 1 kgf = 9.81 N

Bore	Ø rod	Total area	Anular area	
mm	mm	mm²	mm²	
50	32 36	1964	1159 946	
63	40 45	3117	1861 1527	
80	50 56	5027	3063 2564	
100	63 70	7854	4737 4006	
125	80 90	12272	7245 5910	
140	90 100	15394	9032 7540	
160	100 110	20106	12252 10603	
180	110 125	25447	15943 13175	
200	125 140	31416	19144 16022	
250	160 180	49087	28981 23640	
320	200 220	80425	49009 42412	
400	250 280	125664	76576 64089	

13 - THEORETICAL VELOCITIES

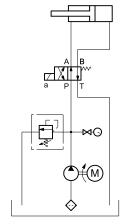
Configuration 1

The diagram illustrates a conventional cylinder application: the fluid is delivered by means of a directional control valve in alternation to the front chamber while the rear chamber is connected to tank and vice versa.

To calculate velocity and force, proceed as follows:

Velocity (extension)

 $V = \frac{Q \cdot 1000}{}$ At - 60


Velocity (retraction)

Q · 1000 Aa . 60

Force (extension)

 $P \cdot At$ Force (retraction)

 $F = P \cdot Aa$

= Velocity in m/s = Flow rate in I/min O

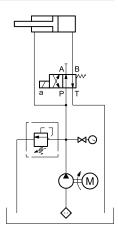
Αt = Total area (piston bore) in mm² Aa = Annular area (At - As) in mm²

F = Force in N

Ρ = Pressure in MPa

= Rod area (At - Aa) in mm² As

= Flow rate through directional control valve (Q+return flow rate from small chamber) in I/min


1 bar = 0.1 MPa

1 kgf = 9.81 N

Configuration 2

When the system requires high velocity with relatively low forces, we recommend using a regenerative circuit. Diagram 2 illustrates the simplest version of this type of set-up.

The annular chamber is permanently connected to the pump while the full bore end is connected alternately to the pump, in which case the piston rod extends as a result of the differential areas (both chambers are supplied at the same pressure), and to tank, in which case the piston rod retracts.

Velocity (extension)

 $= \frac{Q \cdot 1000}{}$ As . 60

Velocity (retraction)

Q · 1000 Aa · 60

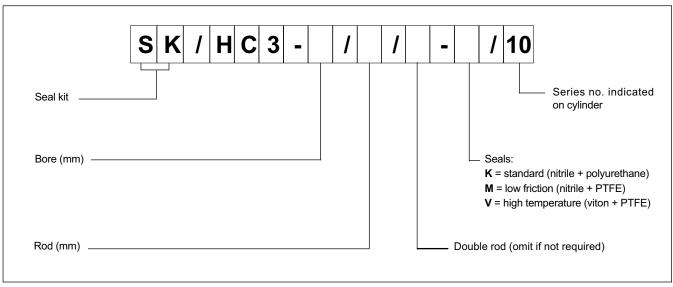
Force (extension)

P · As

Force (retraction)

F = P · Aa

NOTE: In the case of regenerative circuits, the sizing of the directional control valve is fundamental. Flow rate through the directional control valve is calculated according to the following formula:


$$Qd = \frac{V \cdot At \cdot 60}{1000}$$

1000

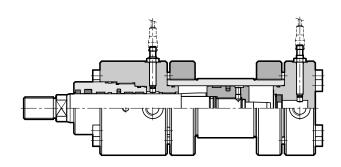
14 - MASSES

		Mass for null stroke						
Bore	Ø rod		Mounting style		10 mm stroke			
		A -B	D - F	L				
mm	mm	kg	kg	kg	kg			
50	32 36	14	16	17	0,2			
63	40 45	28	27	27	0,3			
80	50 56	39	38	39	0,5			
100	63 70	61	62	63	0,6 0,7			
125	80 90	103 104	107 108	110	0,9			
140	90 100	164	173	175	1,1 1,2			
160	100 110	198 199	210	208 209	1,6 1,7			
180	110 125	289	296 297	298 299	2 2,2			
200	125 140	356 357	365 366	364 365	2,2 2,4			
250	160 180	666 667	698 700	685 687	3,2 3,6			
320	200 220	1200 1250	1314 1365	1259 1310	5,1 5,6			
400	250 280	2180 2250	2259 2330	2249 2320	7 7,5			

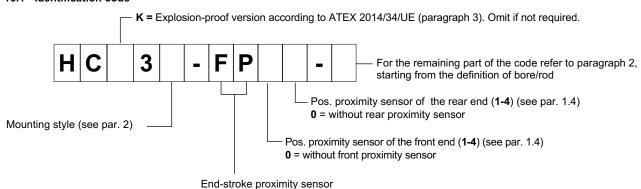
15 - SEAL KIT IDENTIFICATION CODE

NOTE: the seal kit includes all the seals of a full-options cylinder (cushionings and external drain).

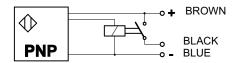
71 200/117 ED 14/18



16 - END-STROKE PROXIMITY SENSORS


Upon request, cylinders can be supplied with end-stroke proximity sensors type PNP, with normally open output. They are mounted on the front and rear end of the cylinder and they supply an electric signal when the piston rod reaches the stroke end. They are available for all cylinder mounting styles, on both ends and for every available bore.

In order to ensure the correct functioning of the system, cylinders must be equipped with cushionings.


These sensors can be only used to provide the switching signal and not to control voltage loads.

16.1 - Identification code

16.2 - Technical characteristics and electrical connection

Rated voltage	VDC	24
Power supply voltage range	VDC	10 ÷ 30
Absorbed current	mA	200
Output	normally open contact	
Electric protection	polarity inversion short circuit overvoltage	
Electric connection	with connector	
Maximum operating pressure	bar	500
Operating temperature range	°C	-25 / +80
Class of protection according IEC EN 60529 (atmospheric ag.)		IP 68
Piston position LED (NOTE)		NO (it's on the connector)

16.3 - Connectors

Connectors for proximity sensors must be ordered separately, by specifying the code: ECM3S/M12L/10

NOTE: These connectors are not suitable for ATEX-rated cylinders. The connectors for the ATEX-rated cylinders are described at paragraph 3.5.

Connector: pre-wired connector M12 - IP68 Cable: with 3 conductors 0.34 mm² - length 5 mt. Cable material: polyurethane resin (oil resistant)

The connector has two LEDs, one green and one yellow.

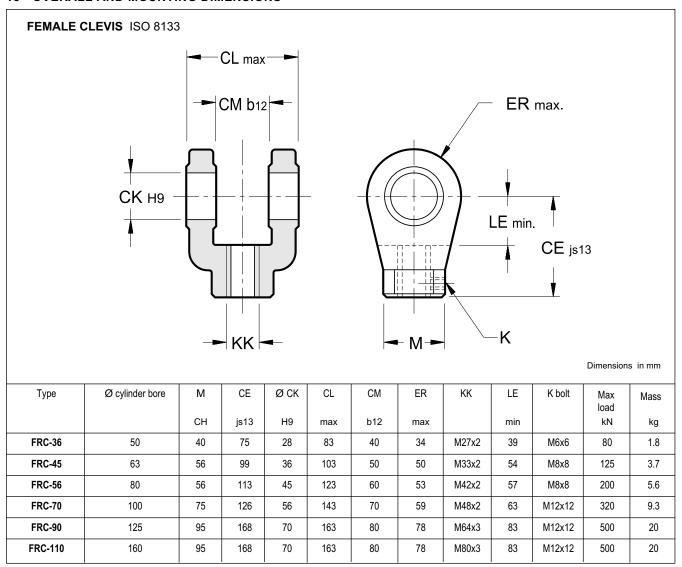
GREEN: Connector power supply.

The LED burn when the connector is supplied.

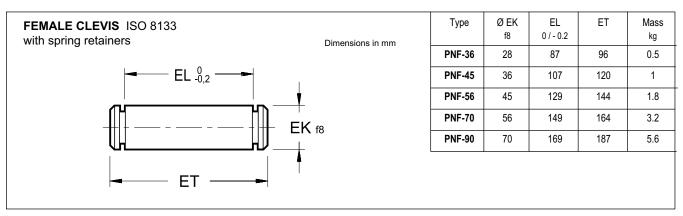
YELLOW: position signal.

ON - piston at stroke end OFF - piston not at stroke end

71 200/117 ED 15/18


HC3

17 - OVERALL AND MOUNTING DIMENSIONS



71 200/117 ED 16/18

18 - OVERALL AND MOUNTING DIMENSIONS

19 - OVERALL AND MOUNTING DIMENSIONS

71 200/117 ED 17/18

DUPLOMATIC MS S.p.A.

via M. Re Depaolini 24 • 20015 PARABIAGO (MI) • ITALY tel. +39 0331.895.111 • www.duplomatic.com • e-mail: sales.exp@duplomatic.com